跳转至

等和线及其应用

1 三点共线、等和线的定义

  1. 三点共线定理: 已知 \(\vec{PA}\), \(\vec{PB}\) 为平面内不共线的两个向量,设 \(\vec{PC} = {x} \vec{PA} + {y} \vec{PB}\),则三点共线的充要条件为 \({x} + {y} = {1}\).

  2. 等和线: 在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.

\({eg.}\) 如图所示,直线\({DE} \parallel {AB}\)\({C}\)为直线\({DE}\)上任一点,设 \(\vec{PC} = {x} \vec{PA}+ {y} \vec{PB}\) (\({x}, {y} \in \mathbb{R}\)).

图m-2-6-1

\({(1)}\) 当直线\({DE}\)经过点\({P}\)时.

  • 这时\({PC = lAB - lPA}\),所以\({x = l, y = -l}\).

  • 所以 \({x} + {y} = l - l = {0}\).

\({(2)}\) 当直线\({DE}\)不经过点\({P}\)时,如图,直线\({PC}\)与直线\({AB}\)的交点记为\({F}\).

  • 由三点共线结论可得: \({PF=lPA+mPB}\),且\({l + m = 1}\).

  • \({PC = k PF}\),则\({PC = klPA + kmPB}\),所以\({x = kl, y = km}\).

  • 所以\({x + y = kl + km = k(l + m) = k}\).

综上所述,\({x + y = kl + km = k}\). 且\({k}\)\({PD = k PB}\),或\({PB = kPA}\)决定.

2 等和线的性质

图m-2-6-1

  1. 当等和线恰为直线\({AB}\)时,\({k = 1}\)(即三点共线).

  2. 当等和线在点\({P}\)和直线\({AB}\)之间时,\({k \in (0,1)}\).

  3. 当直线\({AB}\)在点\({P}\)和等和线之间时,\({k \in (1, +\infty)}\).

  4. 当等和线过\({P}\)点时,\({k = 0}\).

  5. 当两条等和线关于\({P}\)点对称时,则\({k}\)互为相反数.

评论